SEMS-data-collection/include/opencv2/stitching/detail/matchers.hpp

268 lines
11 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_STITCHING_MATCHERS_HPP
#define OPENCV_STITCHING_MATCHERS_HPP
#include "opencv2/core.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/opencv_modules.hpp"
namespace cv {
namespace detail {
//! @addtogroup stitching_match
//! @{
/** @brief Structure containing image keypoints and descriptors. */
struct CV_EXPORTS_W_SIMPLE ImageFeatures
{
CV_PROP_RW int img_idx;
CV_PROP_RW Size img_size;
CV_PROP_RW std::vector<KeyPoint> keypoints;
CV_PROP_RW UMat descriptors;
CV_WRAP std::vector<KeyPoint> getKeypoints() { return keypoints; }
};
/** @brief
@param featuresFinder
@param images
@param features
@param masks
*/
CV_EXPORTS_W void computeImageFeatures(
const Ptr<Feature2D> &featuresFinder,
InputArrayOfArrays images,
CV_OUT std::vector<ImageFeatures> &features,
InputArrayOfArrays masks = noArray());
/** @brief
@param featuresFinder
@param image
@param features
@param mask
*/
CV_EXPORTS_AS(computeImageFeatures2) void computeImageFeatures(
const Ptr<Feature2D> &featuresFinder,
InputArray image,
CV_OUT ImageFeatures &features,
InputArray mask = noArray());
/** @brief Structure containing information about matches between two images.
It's assumed that there is a transformation between those images. Transformation may be
homography or affine transformation based on selected matcher.
@sa detail::FeaturesMatcher
*/
struct CV_EXPORTS_W_SIMPLE MatchesInfo
{
MatchesInfo();
MatchesInfo(const MatchesInfo &other);
MatchesInfo& operator =(const MatchesInfo &other);
CV_PROP_RW int src_img_idx;
CV_PROP_RW int dst_img_idx; //!< Images indices (optional)
CV_PROP_RW std::vector<DMatch> matches;
CV_PROP_RW std::vector<uchar> inliers_mask; //!< Geometrically consistent matches mask
CV_PROP_RW int num_inliers; //!< Number of geometrically consistent matches
CV_PROP_RW Mat H; //!< Estimated transformation
CV_PROP_RW double confidence; //!< Confidence two images are from the same panorama
CV_WRAP std::vector<DMatch> getMatches() { return matches; }
CV_WRAP std::vector<uchar> getInliers() { return inliers_mask; }
};
/** @brief Feature matchers base class. */
class CV_EXPORTS_W FeaturesMatcher
{
public:
CV_WRAP virtual ~FeaturesMatcher() {}
/** @overload
@param features1 First image features
@param features2 Second image features
@param matches_info Found matches
*/
CV_WRAP_AS(apply) void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
CV_OUT MatchesInfo& matches_info) { match(features1, features2, matches_info); }
/** @brief Performs images matching.
@param features Features of the source images
@param pairwise_matches Found pairwise matches
@param mask Mask indicating which image pairs must be matched
The function is parallelized with the TBB library.
@sa detail::MatchesInfo
*/
CV_WRAP_AS(apply2) void operator ()(const std::vector<ImageFeatures> &features, CV_OUT std::vector<MatchesInfo> &pairwise_matches,
const cv::UMat &mask = cv::UMat()) { match(features, pairwise_matches, mask); }
/** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
*/
CV_WRAP bool isThreadSafe() const { return is_thread_safe_; }
/** @brief Frees unused memory allocated before if there is any.
*/
CV_WRAP virtual void collectGarbage() {}
protected:
FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
/** @brief This method must implement matching logic in order to make the wrappers
detail::FeaturesMatcher::operator()_ work.
@param features1 first image features
@param features2 second image features
@param matches_info found matches
*/
virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
MatchesInfo& matches_info) = 0;
/** @brief This method implements logic to match features between arbitrary number of features.
By default this checks every pair of inputs in the input, but the behaviour can be changed by subclasses.
@param features vector of image features
@param pairwise_matches found matches
@param mask (optional) mask indicating which image pairs should be matched
*/
virtual void match(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
const cv::UMat &mask = cv::UMat());
bool is_thread_safe_;
};
/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
ratio between descriptor distances is greater than the threshold match_conf
@sa detail::FeaturesMatcher
*/
class CV_EXPORTS_W BestOf2NearestMatcher : public FeaturesMatcher
{
public:
/** @brief Constructs a "best of 2 nearest" matcher.
@param try_use_gpu Should try to use GPU or not
@param match_conf Match distances ration threshold
@param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
estimation used in the inliers classification step
@param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
re-estimation on inliers
@param matches_confindece_thresh Matching confidence threshold to take the match into account.
The threshold was determined experimentally and set to 3 by default.
*/
CV_WRAP BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
int num_matches_thresh2 = 6, double matches_confindece_thresh = 3.);
CV_WRAP void collectGarbage() CV_OVERRIDE;
CV_WRAP static Ptr<BestOf2NearestMatcher> create(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
int num_matches_thresh2 = 6, double matches_confindece_thresh = 3.);
protected:
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
int num_matches_thresh1_;
int num_matches_thresh2_;
double matches_confindece_thresh_;
Ptr<FeaturesMatcher> impl_;
};
class CV_EXPORTS_W BestOf2NearestRangeMatcher : public BestOf2NearestMatcher
{
public:
CV_WRAP BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);
protected:
// indicate that we do not want to hide the base class match method with a different signature
using BestOf2NearestMatcher::match;
void match(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
const cv::UMat &mask = cv::UMat()) CV_OVERRIDE;
int range_width_;
};
/** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher which
finds two best matches for each feature and leaves the best one only if the
ratio between descriptor distances is greater than the threshold match_conf.
Unlike cv::detail::BestOf2NearestMatcher this matcher uses affine
transformation (affine transformation estimate will be placed in matches_info).
@sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher
*/
class CV_EXPORTS_W AffineBestOf2NearestMatcher : public BestOf2NearestMatcher
{
public:
/** @brief Constructs a "best of 2 nearest" matcher that expects affine transformation
between images
@param full_affine whether to use full affine transformation with 6 degress of freedom or reduced
transformation with 4 degrees of freedom using only rotation, translation and uniform scaling
@param try_use_gpu Should try to use GPU or not
@param match_conf Match distances ration threshold
@param num_matches_thresh1 Minimum number of matches required for the 2D affine transform
estimation used in the inliers classification step
@sa cv::estimateAffine2D cv::estimateAffinePartial2D
*/
CV_WRAP AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false,
float match_conf = 0.3f, int num_matches_thresh1 = 6) :
BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1),
full_affine_(full_affine) {}
protected:
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
bool full_affine_;
};
//! @} stitching_match
} // namespace detail
} // namespace cv
#endif // OPENCV_STITCHING_MATCHERS_HPP