SEMS-data-collection/include/opencv2/objdetect/aruco_detector.hpp

401 lines
19 KiB
C++
Raw Normal View History

2024-09-11 17:14:49 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#ifndef OPENCV_OBJDETECT_ARUCO_DETECTOR_HPP
#define OPENCV_OBJDETECT_ARUCO_DETECTOR_HPP
#include <opencv2/objdetect/aruco_dictionary.hpp>
#include <opencv2/objdetect/aruco_board.hpp>
namespace cv {
namespace aruco {
//! @addtogroup objdetect_aruco
//! @{
enum CornerRefineMethod{
CORNER_REFINE_NONE, ///< Tag and corners detection based on the ArUco approach
CORNER_REFINE_SUBPIX, ///< ArUco approach and refine the corners locations using corner subpixel accuracy
CORNER_REFINE_CONTOUR, ///< ArUco approach and refine the corners locations using the contour-points line fitting
CORNER_REFINE_APRILTAG, ///< Tag and corners detection based on the AprilTag 2 approach @cite wang2016iros
};
/** @brief struct DetectorParameters is used by ArucoDetector
*/
struct CV_EXPORTS_W_SIMPLE DetectorParameters {
CV_WRAP DetectorParameters() {
adaptiveThreshWinSizeMin = 3;
adaptiveThreshWinSizeMax = 23;
adaptiveThreshWinSizeStep = 10;
adaptiveThreshConstant = 7;
minMarkerPerimeterRate = 0.03;
maxMarkerPerimeterRate = 4.;
polygonalApproxAccuracyRate = 0.03;
minCornerDistanceRate = 0.05;
minDistanceToBorder = 3;
minMarkerDistanceRate = 0.125;
cornerRefinementMethod = (int)CORNER_REFINE_NONE;
cornerRefinementWinSize = 5;
relativeCornerRefinmentWinSize = 0.3f;
cornerRefinementMaxIterations = 30;
cornerRefinementMinAccuracy = 0.1;
markerBorderBits = 1;
perspectiveRemovePixelPerCell = 4;
perspectiveRemoveIgnoredMarginPerCell = 0.13;
maxErroneousBitsInBorderRate = 0.35;
minOtsuStdDev = 5.0;
errorCorrectionRate = 0.6;
aprilTagQuadDecimate = 0.0;
aprilTagQuadSigma = 0.0;
aprilTagMinClusterPixels = 5;
aprilTagMaxNmaxima = 10;
aprilTagCriticalRad = (float)(10* CV_PI /180);
aprilTagMaxLineFitMse = 10.0;
aprilTagMinWhiteBlackDiff = 5;
aprilTagDeglitch = 0;
detectInvertedMarker = false;
useAruco3Detection = false;
minSideLengthCanonicalImg = 32;
minMarkerLengthRatioOriginalImg = 0.0;
}
/** @brief Read a new set of DetectorParameters from FileNode (use FileStorage.root()).
*/
CV_WRAP bool readDetectorParameters(const FileNode& fn);
/** @brief Write a set of DetectorParameters to FileStorage
*/
CV_WRAP bool writeDetectorParameters(FileStorage& fs, const String& name = String());
/// minimum window size for adaptive thresholding before finding contours (default 3).
CV_PROP_RW int adaptiveThreshWinSizeMin;
/// maximum window size for adaptive thresholding before finding contours (default 23).
CV_PROP_RW int adaptiveThreshWinSizeMax;
/// increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax during the thresholding (default 10).
CV_PROP_RW int adaptiveThreshWinSizeStep;
/// constant for adaptive thresholding before finding contours (default 7)
CV_PROP_RW double adaptiveThreshConstant;
/** @brief determine minimum perimeter for marker contour to be detected.
*
* This is defined as a rate respect to the maximum dimension of the input image (default 0.03).
*/
CV_PROP_RW double minMarkerPerimeterRate;
/** @brief determine maximum perimeter for marker contour to be detected.
*
* This is defined as a rate respect to the maximum dimension of the input image (default 4.0).
*/
CV_PROP_RW double maxMarkerPerimeterRate;
/// minimum accuracy during the polygonal approximation process to determine which contours are squares. (default 0.03)
CV_PROP_RW double polygonalApproxAccuracyRate;
/// minimum distance between corners for detected markers relative to its perimeter (default 0.05)
CV_PROP_RW double minCornerDistanceRate;
/// minimum distance of any corner to the image border for detected markers (in pixels) (default 3)
CV_PROP_RW int minDistanceToBorder;
/** @brief minimum average distance between the corners of the two markers to be grouped (default 0.125).
*
* The rate is relative to the smaller perimeter of the two markers.
* Two markers are grouped if average distance between the corners of the two markers is less than
* min(MarkerPerimeter1, MarkerPerimeter2)*minMarkerDistanceRate.
*
* default value is 0.125 because 0.125*MarkerPerimeter = (MarkerPerimeter / 4) * 0.5 = half the side of the marker.
*
* @note default value was changed from 0.05 after 4.8.1 release, because the filtering algorithm has been changed.
* Now a few candidates from the same group can be added to the list of candidates if they are far from each other.
* @sa minGroupDistance.
*/
CV_PROP_RW double minMarkerDistanceRate;
/** @brief minimum average distance between the corners of the two markers in group to add them to the list of candidates
*
* The average distance between the corners of the two markers is calculated relative to its module size (default 0.21).
*/
CV_PROP_RW float minGroupDistance = 0.21f;
/** @brief default value CORNER_REFINE_NONE */
CV_PROP_RW int cornerRefinementMethod;
/** @brief maximum window size for the corner refinement process (in pixels) (default 5).
*
* The window size may decrease if the ArUco marker is too small, check relativeCornerRefinmentWinSize.
* The final window size is calculated as:
* min(cornerRefinementWinSize, averageArucoModuleSize*relativeCornerRefinmentWinSize),
* where averageArucoModuleSize is average module size of ArUco marker in pixels.
* (ArUco marker is composed of black and white modules)
*/
CV_PROP_RW int cornerRefinementWinSize;
/** @brief Dynamic window size for corner refinement relative to Aruco module size (default 0.3).
*
* The final window size is calculated as:
* min(cornerRefinementWinSize, averageArucoModuleSize*relativeCornerRefinmentWinSize),
* where averageArucoModuleSize is average module size of ArUco marker in pixels.
* (ArUco marker is composed of black and white modules)
* In the case of markers located far from each other, it may be useful to increase the value of the parameter to 0.4-0.5.
* In the case of markers located close to each other, it may be useful to decrease the parameter value to 0.1-0.2.
*/
CV_PROP_RW float relativeCornerRefinmentWinSize;
/// maximum number of iterations for stop criteria of the corner refinement process (default 30).
CV_PROP_RW int cornerRefinementMaxIterations;
/// minimum error for the stop cristeria of the corner refinement process (default: 0.1)
CV_PROP_RW double cornerRefinementMinAccuracy;
/// number of bits of the marker border, i.e. marker border width (default 1).
CV_PROP_RW int markerBorderBits;
/// number of bits (per dimension) for each cell of the marker when removing the perspective (default 4).
CV_PROP_RW int perspectiveRemovePixelPerCell;
/** @brief width of the margin of pixels on each cell not considered for the determination of the cell bit.
*
* Represents the rate respect to the total size of the cell, i.e. perspectiveRemovePixelPerCell (default 0.13)
*/
CV_PROP_RW double perspectiveRemoveIgnoredMarginPerCell;
/** @brief maximum number of accepted erroneous bits in the border (i.e. number of allowed white bits in the border).
*
* Represented as a rate respect to the total number of bits per marker (default 0.35).
*/
CV_PROP_RW double maxErroneousBitsInBorderRate;
/** @brief minimun standard deviation in pixels values during the decodification step to apply Otsu
* thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher than 128 or not) (default 5.0)
*/
CV_PROP_RW double minOtsuStdDev;
/// error correction rate respect to the maximun error correction capability for each dictionary (default 0.6).
CV_PROP_RW double errorCorrectionRate;
/** @brief April :: User-configurable parameters.
*
* Detection of quads can be done on a lower-resolution image, improving speed at a cost of
* pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still
*/
CV_PROP_RW float aprilTagQuadDecimate;
/// what Gaussian blur should be applied to the segmented image (used for quad detection?)
CV_PROP_RW float aprilTagQuadSigma;
// April :: Internal variables
/// reject quads containing too few pixels (default 5).
CV_PROP_RW int aprilTagMinClusterPixels;
/// how many corner candidates to consider when segmenting a group of pixels into a quad (default 10).
CV_PROP_RW int aprilTagMaxNmaxima;
/** @brief reject quads where pairs of edges have angles that are close to straight or close to 180 degrees.
*
* Zero means that no quads are rejected. (In radians) (default 10*PI/180)
*/
CV_PROP_RW float aprilTagCriticalRad;
/// when fitting lines to the contours, what is the maximum mean squared error
CV_PROP_RW float aprilTagMaxLineFitMse;
/** @brief add an extra check that the white model must be (overall) brighter than the black model.
*
* When we build our model of black & white pixels, we add an extra check that the white model must be (overall)
* brighter than the black model. How much brighter? (in pixel values, [0,255]), (default 5)
*/
CV_PROP_RW int aprilTagMinWhiteBlackDiff;
/// should the thresholded image be deglitched? Only useful for very noisy images (default 0).
CV_PROP_RW int aprilTagDeglitch;
/** @brief to check if there is a white marker.
*
* In order to generate a "white" marker just invert a normal marker by using a tilde, ~markerImage. (default false)
*/
CV_PROP_RW bool detectInvertedMarker;
/** @brief enable the new and faster Aruco detection strategy.
*
* Proposed in the paper:
* Romero-Ramirez et al: Speeded up detection of squared fiducial markers (2018)
* https://www.researchgate.net/publication/325787310_Speeded_Up_Detection_of_Squared_Fiducial_Markers
*/
CV_PROP_RW bool useAruco3Detection;
/// minimum side length of a marker in the canonical image. Latter is the binarized image in which contours are searched.
CV_PROP_RW int minSideLengthCanonicalImg;
/// range [0,1], eq (2) from paper. The parameter tau_i has a direct influence on the processing speed.
CV_PROP_RW float minMarkerLengthRatioOriginalImg;
};
/** @brief struct RefineParameters is used by ArucoDetector
*/
struct CV_EXPORTS_W_SIMPLE RefineParameters {
CV_WRAP RefineParameters(float minRepDistance = 10.f, float errorCorrectionRate = 3.f, bool checkAllOrders = true);
/** @brief Read a new set of RefineParameters from FileNode (use FileStorage.root()).
*/
CV_WRAP bool readRefineParameters(const FileNode& fn);
/** @brief Write a set of RefineParameters to FileStorage
*/
CV_WRAP bool writeRefineParameters(FileStorage& fs, const String& name = String());
/** @brief minRepDistance minimum distance between the corners of the rejected candidate and the reprojected marker
in order to consider it as a correspondence.
*/
CV_PROP_RW float minRepDistance;
/** @brief minRepDistance rate of allowed erroneous bits respect to the error correction capability of the used dictionary.
*
* -1 ignores the error correction step.
*/
CV_PROP_RW float errorCorrectionRate;
/** @brief checkAllOrders consider the four posible corner orders in the rejectedCorners array.
*
* If it set to false, only the provided corner order is considered (default true).
*/
CV_PROP_RW bool checkAllOrders;
};
/** @brief The main functionality of ArucoDetector class is detection of markers in an image with detectMarkers() method.
*
* After detecting some markers in the image, you can try to find undetected markers from this dictionary with
* refineDetectedMarkers() method.
*
* @see DetectorParameters, RefineParameters
*/
class CV_EXPORTS_W ArucoDetector : public Algorithm
{
public:
/** @brief Basic ArucoDetector constructor
*
* @param dictionary indicates the type of markers that will be searched
* @param detectorParams marker detection parameters
* @param refineParams marker refine detection parameters
*/
CV_WRAP ArucoDetector(const Dictionary &dictionary = getPredefinedDictionary(cv::aruco::DICT_4X4_50),
const DetectorParameters &detectorParams = DetectorParameters(),
const RefineParameters& refineParams = RefineParameters());
/** @brief Basic marker detection
*
* @param image input image
* @param corners vector of detected marker corners. For each marker, its four corners
* are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
* the dimensions of this array is Nx4. The order of the corners is clockwise.
* @param ids vector of identifiers of the detected markers. The identifier is of type int
* (e.g. std::vector<int>). For N detected markers, the size of ids is also N.
* The identifiers have the same order than the markers in the imgPoints array.
* @param rejectedImgPoints contains the imgPoints of those squares whose inner code has not a
* correct codification. Useful for debugging purposes.
*
* Performs marker detection in the input image. Only markers included in the specific dictionary
* are searched. For each detected marker, it returns the 2D position of its corner in the image
* and its corresponding identifier.
* Note that this function does not perform pose estimation.
* @note The function does not correct lens distortion or takes it into account. It's recommended to undistort
* input image with corresponding camera model, if camera parameters are known
* @sa undistort, estimatePoseSingleMarkers, estimatePoseBoard
*/
CV_WRAP void detectMarkers(InputArray image, OutputArrayOfArrays corners, OutputArray ids,
OutputArrayOfArrays rejectedImgPoints = noArray()) const;
/** @brief Refine not detected markers based on the already detected and the board layout
*
* @param image input image
* @param board layout of markers in the board.
* @param detectedCorners vector of already detected marker corners.
* @param detectedIds vector of already detected marker identifiers.
* @param rejectedCorners vector of rejected candidates during the marker detection process.
* @param cameraMatrix optional input 3x3 floating-point camera matrix
* \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
* @param distCoeffs optional vector of distortion coefficients
* \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements
* @param recoveredIdxs Optional array to returns the indexes of the recovered candidates in the
* original rejectedCorners array.
*
* This function tries to find markers that were not detected in the basic detecMarkers function.
* First, based on the current detected marker and the board layout, the function interpolates
* the position of the missing markers. Then it tries to find correspondence between the reprojected
* markers and the rejected candidates based on the minRepDistance and errorCorrectionRate parameters.
* If camera parameters and distortion coefficients are provided, missing markers are reprojected
* using projectPoint function. If not, missing marker projections are interpolated using global
* homography, and all the marker corners in the board must have the same Z coordinate.
*/
CV_WRAP void refineDetectedMarkers(InputArray image, const Board &board,
InputOutputArrayOfArrays detectedCorners,
InputOutputArray detectedIds, InputOutputArrayOfArrays rejectedCorners,
InputArray cameraMatrix = noArray(), InputArray distCoeffs = noArray(),
OutputArray recoveredIdxs = noArray()) const;
CV_WRAP const Dictionary& getDictionary() const;
CV_WRAP void setDictionary(const Dictionary& dictionary);
CV_WRAP const DetectorParameters& getDetectorParameters() const;
CV_WRAP void setDetectorParameters(const DetectorParameters& detectorParameters);
CV_WRAP const RefineParameters& getRefineParameters() const;
CV_WRAP void setRefineParameters(const RefineParameters& refineParameters);
/** @brief Stores algorithm parameters in a file storage
*/
virtual void write(FileStorage& fs) const override;
/** @brief simplified API for language bindings
*/
CV_WRAP inline void write(FileStorage& fs, const String& name) { Algorithm::write(fs, name); }
/** @brief Reads algorithm parameters from a file storage
*/
CV_WRAP virtual void read(const FileNode& fn) override;
protected:
struct ArucoDetectorImpl;
Ptr<ArucoDetectorImpl> arucoDetectorImpl;
};
/** @brief Draw detected markers in image
*
* @param image input/output image. It must have 1 or 3 channels. The number of channels is not altered.
* @param corners positions of marker corners on input image.
* (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the dimensions of
* this array should be Nx4. The order of the corners should be clockwise.
* @param ids vector of identifiers for markers in markersCorners .
* Optional, if not provided, ids are not painted.
* @param borderColor color of marker borders. Rest of colors (text color and first corner color)
* are calculated based on this one to improve visualization.
*
* Given an array of detected marker corners and its corresponding ids, this functions draws
* the markers in the image. The marker borders are painted and the markers identifiers if provided.
* Useful for debugging purposes.
*/
CV_EXPORTS_W void drawDetectedMarkers(InputOutputArray image, InputArrayOfArrays corners,
InputArray ids = noArray(), Scalar borderColor = Scalar(0, 255, 0));
/** @brief Generate a canonical marker image
*
* @param dictionary dictionary of markers indicating the type of markers
* @param id identifier of the marker that will be returned. It has to be a valid id in the specified dictionary.
* @param sidePixels size of the image in pixels
* @param img output image with the marker
* @param borderBits width of the marker border.
*
* This function returns a marker image in its canonical form (i.e. ready to be printed)
*/
CV_EXPORTS_W void generateImageMarker(const Dictionary &dictionary, int id, int sidePixels, OutputArray img,
int borderBits = 1);
//! @}
}
}
#endif